Metnase Mediates Resistance to Topoisomerase II Inhibitors in Breast Cancer Cells

نویسندگان

  • Justin Wray
  • Elizabeth A. Williamson
  • Melanie Royce
  • Montaser Shaheen
  • Brian D. Beck
  • Suk-Hee Lee
  • Jac A. Nickoloff
  • Robert Hromas
چکیده

DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIalpha (Topo IIalpha) is the primary decatenating enzyme. Cells monitor catenation status and activate decatenation checkpoints when decatenation is incomplete, which occurs when Topo IIalpha is inhibited by chemotherapy agents such as the anthracyclines and epididophyllotoxins. We recently demonstrated that the DNA repair component Metnase (also called SETMAR) enhances Topo IIalpha-mediated decatenation, and hypothesized that Metnase could mediate resistance to Topo IIalpha inhibitors. Here we show that Metnase interacts with Topo IIalpha in breast cancer cells, and that reducing Metnase expression significantly increases metaphase decatenation checkpoint arrest. Repression of Metnase sensitizes breast cancer cells to Topo IIalpha inhibitors, and directly blocks the inhibitory effect of the anthracycline adriamycin on Topo IIalpha-mediated decatenation in vitro. Thus, Metnase may mediate resistance to Topo IIalpha inhibitors, and could be a biomarker for clinical sensitivity to anthracyclines. Metnase could also become an important target for combination chemotherapy with current Topo IIalpha inhibitors, specifically in anthracycline-resistant breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5,6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors

Two set of 2-aryl-5,6-dihydropyrrolo[2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithel...

متن کامل

Potential Role for the Metnase Transposase Fusion Gene in Colon Cancer through the Regulation of Key Genes

The Metnase fusion gene consists of a SET histone methyltransferase domain and a transposase domain from Mariner transposase. This transposable element is involved in chromosome decatenation, enhances DNA repair, promotes foreign DNA integration, and assists topoisomerase II function. This study investigates the role of Metnase in colon cancer homeostasis and maintenance of the stemness phenoty...

متن کامل

The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation

Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIalpha (Topo IIalpha), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo IIalpha inhibitors ICRF-193 and VP-16....

متن کامل

Design, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5,6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors

Two set of 2-aryl-5,6-dihydropyrrolo[2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithel...

متن کامل

Metnase mediates chromosome decatenation in acute leukemia cells.

After DNA replication, sister chromatids must be untangled, or decatenated, before mitosis so that chromatids do not tear during anaphase. Topoisomerase IIalpha (Topo IIalpha) is the major decatenating enzyme. Topo IIalpha inhibitors prevent decatenation, causing cells to arrest during mitosis. Here we report that acute myeloid leukemia cells fail to arrest at the mitotic decatenation checkpoin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009